

## **Transport Feasibility Assessment**

Omahu Industrial Area for Hastings District Council

November 2015

## **Table of Contents**

| 1. | Introd | duction2                            |
|----|--------|-------------------------------------|
|    | 1.1    | Background2                         |
|    | 1.2    | Purpose of this Report2             |
|    | 1.3    | Scope and Limitations2              |
| 2. | Existi | ing Situation3                      |
|    | 2.1    | Site Description                    |
|    | 2.2    | Omahu Road3                         |
|    | 2.3    | Traffic Volumes4                    |
|    | 2.4    | Intersection Turning Flows5         |
|    | 2.5    | Road widths5                        |
|    | 2.6    | Cyclists and Pedestrians6           |
|    | 2.7    | Traffic Growth6                     |
| 3. | Propo  | osed Re-zoning8                     |
|    | 3.1    | Introduction8                       |
|    | 3.2    | Access and Egress                   |
|    | 3.3    | Existing Trip Generation8           |
|    | 3.4    | Industrial Trip Generation8         |
|    | 3.5    | District Plan Provisions9           |
| 4. | Existi | ing Intersection Performance10      |
|    | 4.1    | Level of Service                    |
|    | 4.2    | Existing Intersection Performance10 |
|    | 4.3    | Assessment11                        |
|    | 4.4    | Options11                           |
| 5. | Sumr   | nary and Conclusion13               |
| 6. | Reco   | mmendations                         |

## 1. Introduction

#### 1.1 Background

In September 2012 Hastings District Council (Council) investigated the effects of a proposed plan change along Omahu Road that would provide up to 36 hectares of land to be re-zoned from Plains Zone under the Hastings District Plan (District Plan) to Industrial.

The 2012 Integrated Transportation Assessment found that the proposed re-zoning may generate up to 630 vehicles per hour during the weekday period, however the effects on the transport network where considered no more than minor following the completion of a number of infrastructure recommendations.

#### **1.2 Purpose of this Report**

The size of land currently being considered for re-zoning has increased to 72 hectares, and this report seeks to update the previous analysis and to provide a preliminary assessment of the anticipated traffic effects of any re-zoning, and any mitigation that may be required.

#### **1.3 Scope and Limitations**

This report has been prepared by GHD for Council. The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

It must be noted that this assessment is limited to the immediate area expected to be affected by the proposed development, and while no wider affects are anticipated to the west of the site, it is recognised that volume increases are anticipated to the east on the Hawke's Bay Expressway which is a strategic route purposely built for this function and managed by the New Zealand Transport Agency.

Should Council be minded to progress this proposal it is recommended that a full Integrated Transport Assessment be completed.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

## 2. Existing Situation

#### 2.1 Site Description

The proposed development is situated immediately adjacent Omahu Road, extending from its intersection with Ormond Road to Kirkwood Road, a distance of approximately 3.3 km. The location of the site is shown in Figure 1 below.



#### **Figure 1: Site Location**

The development site is made up of multiple titles comprising a total land area of approximately 72 hectares. This land is zoned Plains under the Hastings District Plan with existing land use predominantly consisting of horticultural and agricultural activities.

#### 2.2 Omahu Road

Omahu Road is defined as a Regional Arterial in the Hastings District Council road hierarchy. Regional arterials are roads which are of strategic regional importance and hold a significant element in the regional economy.

The route currently services residential, light and heavy industrial traffic. It provides a direct link between the Hastings urban area, Flaxmere and Fernhill Township, providing high level connectivity to Hawkes Bay Expressway (SH50A), SH50, Hawkes Bay Regional Hospital and the existing Industrial/ commercial land uses.

The Hawkes Bay Expressway (SH50A) intercepts Omahu Road on the eastern fringe of the new industrial zone.

The carriageway width along its entire length varies with the average carriageway width being approximately 16 m. The road reserve varies between 23 and 30 m between Kirkwood Road and Wilson Road. The section between Jarvis and Raupare Road is the minimum at 23 m.



Figure 2: Omahu Road between Chatham Road and Henderson Road

Omahu Road is a two-lane road with a flush median, cycle lanes and parking.

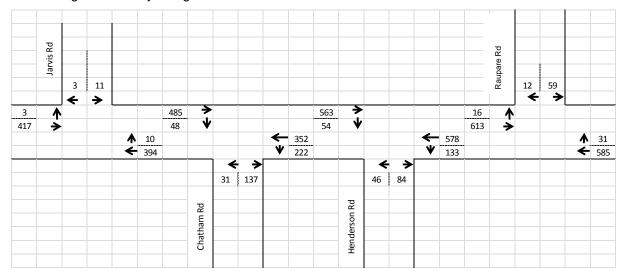
The traffic volume on Omahu Road between Wilson Road and Henderson Road is approximately 12,300 vehicles per day. This reduces to 5,200 vehicles per day between Jarvis Road and Twyford Road.

In the vicinity of the site, Omahu Road is subject to two speed limits. A 50 km/hr speed limit extends from the Hawkes Bay Expressway, to a point south of its intersection with Barnes Place. A 70 km/hr speed limit extends from south of Barnes Place to just north of its intersection with Kirkwood Road. The speed limit changes to 100 km/hr beyond Kirkwood Road.

#### 2.3 Traffic Volumes

The traffic volumes on the various streets in the vicinity of the site are tabulated in Table 1. These volumes were extracted from HDC <u>http://www.hastingsdc.govt.nz/traffic-volumes</u>

#### Table 1: 2014 Traffic Volumes


| Street        | Location                      | ADT        |
|---------------|-------------------------------|------------|
|               | Wilson Road -Henderson Road   | 11,439 *** |
|               | Henderson Road– Chatham Road  | 12,500     |
| Omahu Road    | Chatham Road – Jarvis Road    | 9,500      |
|               | Jarvis Road – Twyford Road    | 9,000      |
|               | Twyford Road - Kirkwood Road  | 8,000      |
|               | Kirkwood Road- Hill Road      | 5,000      |
| Chatham Road  | Omahu Road – Hazelwood Street | 4,000      |
| Jarvis Road   | Omahu Road – Thompson Road    | 207        |
| Raupare Road  | Omahu Road – Thompson Road    | 1,000      |
| Thompson Road | Raupare Road - Jarvis Road    | 894 ***    |
| mompson Road  | Jarvis Road - Twyford Road    | 550        |
| Twyford Road  | Omahu Road – Thompson Road    | 500        |
| Kirkwood Road | Wilkes Place - Omahu Road     | 1,131 ***  |

\*\*\* Represents 2014 Actual Counts

#### 2.4 Intersection Turning Flows

Detailed intersection surveys were undertaken on Monday 19 October 2015 on Omahu Road at the intersections of Jarvis Road, Chatham Road, Henderson Road and Raupare Road between 4:00pm and 5:30 pm.

The peak hour was identified to be 4:15pm to 5:15pm; the peak hour turning flows have been shown diagrammatically in Figure 3 below:



#### Figure 3: Evening Peak Flows on Omahu Road

The proportion of heavy commercial vehicles on Omahu Road is approximately 8.3%

The eastbound hourly flows on Omahu Road increase towards the east, and vary between 420 vph at Jarvis Road to 670 vph at Raupare Road. The westbound flows decrease as traffic drives west, with 620 vph at Raupare Road reducing to 400 vph at Jarvis Road.

Flows on the side roads are much smaller with maximum one-way flows of 270 vph entering Chatham Road.

#### 2.5 Road widths

The road widths on the various streets in the vicinity of the site are tabulated below:

#### Table 2: Road Widths

| Location                      | Carriageway |
|-------------------------------|-------------|
| Omahu Road (Jarvis – Raupare) | 16.0 m      |
| Kirkwood Road                 | 10.0 m      |
| James Rochfort                | 12.0 m      |
| Twyford Road                  | 4.8 m       |
| Jarvis Road                   | 5.5 m       |
| Barnes Place                  | 12.5 m      |
| Chatham Road                  | 15.0 m      |
| Henderson Road                | 14.0 m      |
| Raupare Road                  | 6.5 m       |
| Ormond Street                 | 6.0 m       |
| Wilson Road                   | 13.6 m      |

#### 2.6 Cyclists and Pedestrians

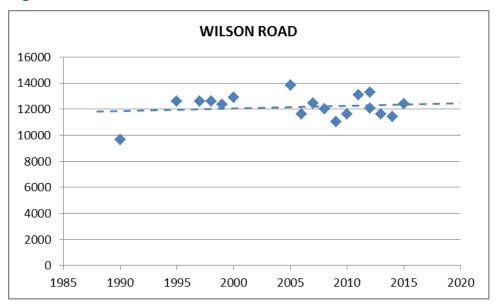
Omahu Road is highlighted as an integral part of the Hastings Cycling Strategy, with Omahu Road forming part of Hastings District Council's Arterial i-Way Network.

The Northern section of Omahu Road generally from Wilson Road through to Jarvis Road, provides two x 2.0 m on road cycle lanes.

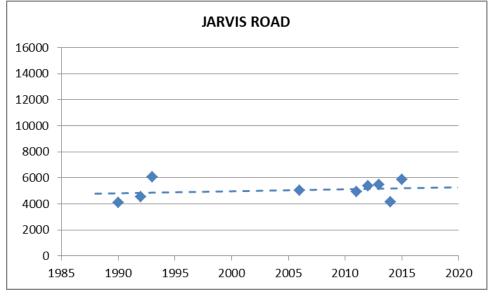
A pedestrian footway is provided on the southern side of Omahu Road only and reflects the traffic generated by the existing industrial activities that have established there. There are no pedestrian crossing facilities provided either at the intersections or mid-block to safely provide for pedestrians wishing to cross and access this side of Omahu Road.

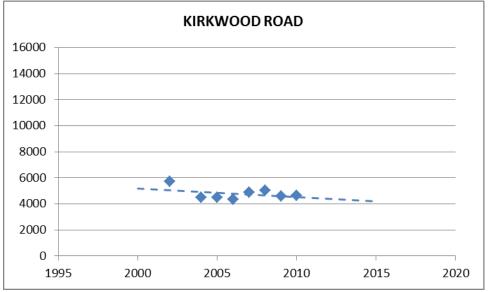
#### 2.7 Traffic Growth

The Hastings District Council RAMM database was used to look at traffic growth patterns. Council regularly undertakes traffic count surveys on Omahu Road at eight different locations.


The traffic growth rates for different sections of Omahu Road are shown below:

| Location          |                   | 2015 Volume | Annual Growth |
|-------------------|-------------------|-------------|---------------|
| Maeraekakaho Road | McLeod Street     | 17,100      | 0.6 % pa      |
| McLeod Street     | Canning Road      | 16,900      | 0.5% pa       |
| Canning Road      | Stonycroft Street | 17,400      | 0.9% pa       |
| Stonycroft Street | SH50A             | 21,800      | 1.7% pa       |
| SH50A             | Wilson Road       | 13,900      | -0.9% pa      |
| Wilson Road       | Henderson Road    | 12,400      | 0.2% pa       |
| Jarvis Road       | Twyford Road      | 5,200       | 0.3% pa       |
| Kirkwood Road     | Hill Road         | 4,200       | -1.5% pa      |


#### **Table 3: Traffic Growth**


The traffic growth in the area has been pretty static over the past decade. The highest growth has all occurred east of SH50A. The growth on Omahu Road closest to the site has been negative in some sections and for these reasons no additional background growth has been applied in this initial feasibility assessment.

The traffic count patterns for the sites closest to the site are shown below:









## 3. Proposed Re-zoning

#### 3.1 Introduction

The Council is evaluating a Plan Change for a new industrial development on 72 hectares of land adjacent to the northern side of Omahu Road, Hastings.

The Council is unable to confirm the exact detail and composition of the businesses that are likely to establish on the site, however it is expected that the businesses will be those broadly summarised as dry industry reflecting the limited capacity for the supply of process water to this area.

Furthermore Council are likely to consider staging the development to reflect a number of issues including infrastructure capital costs, expected demand, and Council's overall strategy. Again council are currently unclear as to what staging options may look like and to some degree will be influenced by the outcomes of this report and other infrastructure assessments currently underway. Therefore no consideration has been given to staging options at this time.

#### 3.2 Access and Egress

The level of access to the site is unknown at this stage; however at a minimum level multiple access points are anticipated along Omahu Road. The majority of the access points are anticipated from private driveways as commonly seen on the southern side of Omahu Road. It is also likely that a small quantity of high volume driveways will be established.

The existing road layout provides a central flush median. It is anticipated that this facility will provide effective holding and turning provision for vehicles performing right turn manoeuvres both to and from the site. Furthermore on road cycle lanes exists, which when unoccupied are commonly utilised as left turn deceleration lanes.

In addition, both the Hastings District Plan and Engineering Code of Practice provide specific requirements pertaining to the location, design and construction standards of private driveways.

#### 3.3 Existing Trip Generation

The existing area is zoned as Plains Zone within the Hastings District Plan and land use is generally consisting of horticultural and agricultural activities. Some industrial and commercial activities are already located within the area. It has been estimated that during peak times, the existing trip generation is around 50 vehicles per hour.

#### 3.4 Industrial Trip Generation

Table 4 below shows typical trip generation rates for alternative land uses.

| Landuse Activity | Vehicles/day/hectare |
|------------------|----------------------|
| Light Industry   | 160                  |
| Heavy Industry   | 70                   |
| Office           | 600                  |
| Residential      | 160                  |
| Retail           | 1350                 |

#### Table 4 Trip Generation Rates

As it is not known whether the proposed developments on the rezoned sites will be light or heavy industry, it has been assumed that the development will comprise mainly of light industry as this has the higher trip generation rate and consequently the biggest potential impact on the surrounding road network.

Typical hourly and directional splits are tabulated below.

#### Table 5 Hourly and Directional Splits

| Time Period | % of daily | In  | Out |
|-------------|------------|-----|-----|
| Morning     | 9%         | 72% | 28% |
| Interpeak   | 8%         | 50% | 50% |
| Evening     | 10%        | 35% | 65% |

#### Table 6 Site Trip Generations

| Time Period | In  | Out | Two-way |
|-------------|-----|-----|---------|
| Morning     | 716 | 279 | 995     |
| Interpeak   | 436 | 436 | 872     |
| Evening     | 401 | 751 | 1,152   |

Based on 72 hectares of industrial zoned land, the resulting trips in and out of the site during the evening peak period are 1152 vph.

#### 3.5 District Plan Provisions

The development is bound by the requirements of the District Plan where it is currently zoned Rural Plains, and the proposed activities are described as being industrial. As such it will be necessary to assess the proposal against the General Performance Standards of Section 14.1 Traffic Sightlines, Parking, Access and Loading.

Individual sites that are developed once the re-zoning has been undertaken will be required to adhere to these standards. At this stage no specific assessment has been carried out for these performance standards however it is recognised that Council are maintaining an average development gap of 35% Developable Gross Floor Area. Therefore it is considered feasible that that developers will be able to comply with these performance standards within the remaining site areas.

## 4. Existing Intersection Performance

#### 4.1 Level of Service

The capacity of a roadway varies according to a wide range of influences including the road type, location in the network and the nature of adjoining land uses.

The term Level of Service is provided to characterise operational conditions within a traffic stream and their perception by motorists and passengers. Six Levels of Service (LOS) are defined with A representing the highest level, and F the worst. As traffic volumes increase, the level of service decreases. For most design or planning purposes, service flow rates D or C are usually used. The following general statements describe the various Levels of Service.

| LOS | Description          | Intersection Delay |
|-----|----------------------|--------------------|
| А   | Free-flowing         | <10                |
| В   | Reasonably unimpeded | 11 - 15            |
| С   | Stable flow          | 16 - 25            |
| D   | Unsettled            | 26 - 35            |
| E   | Significant delays   | 36 - 50            |
| F   | Exceeds Capacity     | 50 +               |

Table 7 Level of Service Descriptions

#### 4.2 Existing Intersection Performance

Hastings District Council has a microsimulation model called the Hastings Area Transport (HAT) Model. It was intended to use this model to test the network wide effects of the proposed plan change.

The HATs model uses the S-Paramics software which is traffic simulation software used by planning professionals to design efficient, economical, driver and pedestrian friendly transportation infrastructure.

The modelled network covers the entire extent of the Heretaunga Plains and was calibrated at a network level in 2012 when the model was updated to a 2012 base year model.

The model was interrogated for the Omahu area and assessed against the observed flows recorded during the manual traffic count surveys to assess its suitability for the area assessment. It was established that the base flow volumes contained within the model did not accurately represent the conditions observed for this particular area.

Therefore the existing intersection performance for 4:15 to 5:15 (PM peak) has been assessed using Sidra as an alternative analysis method. The result for each intersection, together with the layout that was modelled is provided in Appendix A:

However it should be noted that when applying this analysis technique, each intersection is assessed in isolation to the rest of the network, taking little account of predicted upstream or downstream influences. This notwithstanding, the method is considered appropriate for the initial feasibility testing of the proposed development.

#### 4.3 Assessment

In this modelling assessment, the base line performance of the network, (being several identified intersections) was established through modelling the observed traffic conditions. The measured LOS currently available at the relevant locations is provided in Table 8 (2015 Do Nothing Model Scenario).

In order to accurately assess the impact of the proposed development, it is necessary to assign the development's calculated trip generation to a distribution route through the network and effectively assess the change in LOS. This change is summarised in Table 8 (2015 With Development Scenario).

From the modelling assessment carried out, looking at both LOS and other performance inputs (queue length, degree of saturation and expected safety performance), a significant deterioration occurs at the Chatham Road, Henderson Road and Raupare Road intersections.

While a deterioration in LOS is observed at the Jarvis Road intersection, changing from a LOS B to LOS D, this only applicable to approximately 15 vehicles in the peak hour, with ample capacity available and no queue length occurring. Ultimately this outcome is considered to be acceptable at this location.

Intersections located to the west of Jarvis Road are expected to operate similar to or better than Jarvis Road and have not been analysed.

#### 4.4 **Options**

Given the significant deterioration of LOS at the Chatham Road, Henderson Road and Raupare Road intersections, alternative intersection arrangements have been assessed.

The traffic flow conditions observed at Henderson Road and Chatham Road are suitable to support a Roundabout intersection arrangement. This has been modelled and shown to significantly improve LOS to a level greater than that currently observed under the baseline. This is indicated in Table 8 (2015 With Development Scenario + Alternative Infrastructure) with both intersections predicted to operate at LOS B.

In respect to Raupare Road, 3 options where considered:

- 1. Roundabout
- 2. Multi lane approach on Raupare Road
- 3. Prohibition of Right Turn into and out of Raupare Road

In summary, the poor LOS (LOS F) is attributable to the 13 vehicles performing a right turn manoeuvre during the peak period. This volume of vehicles does not provide sufficient financial justification or suitable flow conditions to support a roundabout arrangement. This option was subsequently discounted.

When increasing the multi lane approach on Raupare Road, there is an overall improvement for left turning vehicles, however the ability for right turning vehicles to achieve suitable gaps in traffic is not addressed and the level of delay remains unchanged.

LOS standards are cognisant of safety and it is recognised that vehicles are more inclined to accept smaller gaps in traffic when long delays are incurred. This in turn is likely to reduce the safety performance of the intersection.

Given the presence of the existing roundabout to the east, at the Wilson Road/ Omahu Road intersection, and the recommended roundabout at Henderson Road, it is considered suitable to prohibit vehicles turning right from Raupare Road, in to Omahu Road. In order to physical restrict this manoeuvre, it is recommended that the right turn into Ruapare Road also be

removed, allowing for a central median to be installed throughout the length of the intersection. An alternative left in left out arrangement would ensue, with vehicles using the upstream and downstream roundabouts to facilitate destination choice.

| Intersection   | Approach  | 2015 Do<br>Nothing Model<br>Scenario | 2015 With<br>Development<br>Scenario | 2015 With<br>Development Scenario<br>+ Alternative<br>Infrastructure |
|----------------|-----------|--------------------------------------|--------------------------------------|----------------------------------------------------------------------|
|                |           | PM Peak                              | PM Peak                              | PM Peak                                                              |
| Omahu Road /   | OM_JR_SB  | А                                    | А                                    | А                                                                    |
| Jarvis Road    | OM_JR_NB  | А                                    | А                                    | А                                                                    |
|                | JR_OM_SWB | В                                    | D                                    | D                                                                    |
| Omahu Road /   | OM_CH_SB  | А                                    | А                                    | А                                                                    |
| Chatham Road   | OM_CH_NB  | A                                    | А                                    | А                                                                    |
| onatian rioda  | CH_OM_NEB | D                                    | F                                    | В                                                                    |
| Omahu Road /   | OM_HN_SB  | А                                    | А                                    | А                                                                    |
| Henderson Road | OM_HN_NB  | А                                    | А                                    | А                                                                    |
|                | HN_OM_NEB | E                                    | F                                    | В                                                                    |
| Omahu Road /   | OM_RP_SB  | А                                    | А                                    | А                                                                    |
| Raupare Road   | OM_RP_NB  | А                                    | А                                    | А                                                                    |
|                | RP_OM_SWB | В                                    | F                                    | С                                                                    |

#### **Table 8: Peak Hours Predicted Level of Service**

### 5. Summary and Conclusion

This report has examined the traffic effects of rezoning 72 hectares of plains zoned land in Hastings to industrial land. The report has focussed on the additional trips that will be generated from the site and how this will integrate with the surrounding road network.

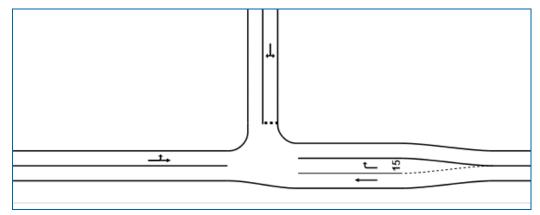
The resulting analysis indicates that the proposed development may generate up to 1152 vehicles per hour during the weekday evening peak period. While the peak hour traffic flows at the site are likely to coincide with the surrounding network peak, in general it is concluded there will be no significant impact on the functionality of Omahu Road or the main intersections along this route, following successful implementation of the recommendations contained within this report.

However it must be noted that this assessment is limited to the immediate area expected to be affected by the proposed development, and while no wider affects are anticipated to the west of the site, it is recognised that volume increases are anticipated to the east on the Hawke's Bay Expressway which is a strategic route purposely built for this function.

Should Council be minded to progress this proposal it is recommended that a full Integrated Transport Assessment be completed.

### 6. **Recommendations**

Based on the original 2012 Integrated Transport Assessment, the findings of this report and the associated conclusions, it is recommended that:


- The general recommendations that where provided within the 2012 report be adopted.
- The Henderson Road intersection with Omahu Road is upgraded to a roundabout intersection.
- The Chatham Road intersection with Omahu Road is upgraded to a roundabout intersection.
- The Raupare road intersection with Omahu Road is modified to prohibit right turning manoeuvres both into and out of Raupare Road.
- While not modelled in detail, the Twyford Road and Omahu Road intersection be upgraded to include a formal right turn lane for vehicles on Omahu Road.
- Consultation takes place with the New Zealand Transport Agency regarding anticipated effects on the strategic State Highway network.

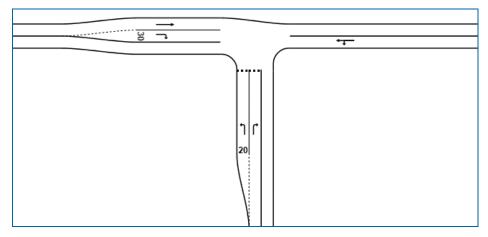
## Appendices

GHD | Report for Transport Feasibility Assessment - Omahu Industrial Area, 51/33587/PN

## Appendix A – SIDRA Intersection Modelling

#### Jarvis Road: (Existing Layout)




#### **Existing Situation**

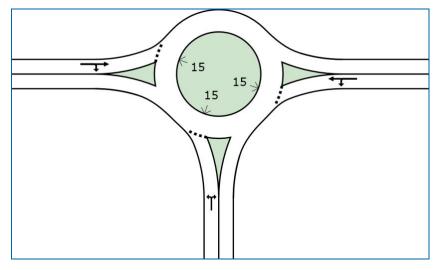
| Move     | ment Perfo | ormance - | · Vehicle | es        |         |          |          |          |        |           |         |
|----------|------------|-----------|-----------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov II   | D ODMo     | Demanc    | d Flows [ | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|          |            | Total     | HV        |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|          |            | veh/h     | %         | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| East:    | East       |           |           |           |         |          |          |          |        |           |         |
| 5        | T1         | 415       | 10.0      | 0.227     | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| 6        | R2         | 11        | 0.0       | 0.009     | 7.1     | LOS A    | 0.0      | 0.3      | 0.47   | 0.61      | 51.9    |
| Approach |            | 425       | 9.8       | 0.227     | 0.2     | NA       | 0.0      | 0.3      | 0.01   | 0.02      | 59.7    |
| North:   | Jarvis     |           |           |           |         |          |          |          |        |           |         |
| 7        | L2         | 3         | 0.0       | 0.035     | 12.6    | LOS B    | 0.1      | 0.8      | 0.65   | 0.81      | 48.6    |
| 9        | R2         | 12        | 0.0       | 0.035     | 12.5    | LOS B    | 0.1      | 0.8      | 0.65   | 0.81      | 48.1    |
| Appro    | ach        | 15        | 0.0       | 0.035     | 12.6    | LOS B    | 0.1      | 0.8      | 0.65   | 0.81      | 48.2    |
| West:    | West       |           |           |           |         |          |          |          |        |           |         |
| 10       | L2         | 3         | 0.0       | 0.241     | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 58.3    |
| 11       | T1         | 439       | 10.0      | 0.241     | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| Approach |            | 442       | 9.9       | 0.241     | 0.1     | NA       | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| All Ve   | hicles     | 882       | 9.7       | 0.241     | 0.3     | NA       | 0.1      | 0.8      | 0.02   | 0.02      | 59.6    |

#### With Development

| Movement Performance - Vehicles |        |        |       |           |         |          |          |          |        |           |         |
|---------------------------------|--------|--------|-------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID                          | ODMo   | Demanc | flows | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|                                 |        | Total  | HV    |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|                                 |        | veh/h  | %     | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| East: E                         | ast    |        |       |           |         |          |          |          |        |           |         |
| 5                               | T1     | 659    | 10.0  | 0.360     | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| 6                               | R2     | 11     | 0.0   | 0.015     | 9.3     | LOS A    | 0.1      | 0.4      | 0.61   | 0.73      | 50.3    |
| Approa                          | ich    | 669    | 9.8   | 0.360     | 0.2     | NA       | 0.1      | 0.4      | 0.01   | 0.01      | 59.7    |
| North:                          | Jarvis |        |       |           |         |          |          |          |        |           |         |
| 7                               | L2     | 3      | 0.0   | 0.104     | 30.1    | LOS D    | 0.3      | 2.2      | 0.89   | 0.95      | 39.4    |
| 9                               | R2     | 12     | 0.0   | 0.104     | 30.0    | LOS D    | 0.3      | 2.2      | 0.89   | 0.95      | 39.1    |
| Approa                          | ich    | 15     | 0.0   | 0.104     | 30.1    | LOS D    | 0.3      | 2.2      | 0.89   | 0.95      | 39.2    |
| West: V                         | Nest   |        |       |           |         |          |          |          |        |           |         |
| 10                              | L2     | 3      | 0.0   | 0.407     | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 58.2    |
| 11                              | T1     | 742    | 10.0  | 0.407     | 0.1     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| Approach                        |        | 745    | 10.0  | 0.407     | 0.1     | NA       | 0.0      | 0.0      | 0.00   | 0.00      | 59.8    |
| All Ver                         | icles  | 1429   | 9.8   | 0.407     | 0.4     | NA       | 0.3      | 2.2      | 0.01   | 0.02      | 59.5    |

#### **Chatham Road (Existing Layout)**




#### **Existing Situation**

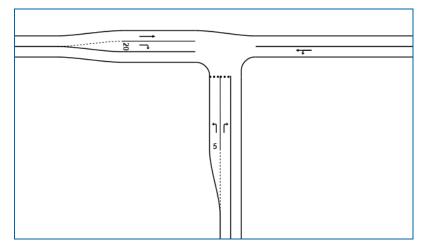
| Mover    | nent Perfo | ormance · | - Vehicl | es        |         |          |          |          |        |           |         |
|----------|------------|-----------|----------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID   | ODMo       | Demano    | d Flows  | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|          |            | Total     | HV       |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|          |            | veh/h     | %        | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South:   | Chatham    |           |          |           |         |          |          |          |        |           |         |
| 1        | L2         | 33        | 16.0     | 0.032     | 7.3     | LOS A    | 0.1      | 1.0      | 0.43   | 0.62      | 51.6    |
| 3        | R2         | 144       | 12.0     | 0.623     | 32.0    | LOS D    | 3.1      | 23.7     | 0.91   | 1.13      | 38.0    |
| Approach |            | 177       | 12.7     | 0.623     | 27.5    | LOS D    | 3.1      | 23.7     | 0.82   | 1.04      | 40.0    |
| East: E  | ast        |           |          |           |         |          |          |          |        |           |         |
| 4        | L2         | 234       | 5.0      | 0.333     | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.23      | 56.1    |
| 5        | T1         | 371       | 10.0     | 0.333     | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.23      | 57.8    |
| Approa   | ch         | 604       | 8.1      | 0.333     | 2.2     | NA       | 0.0      | 0.0      | 0.00   | 0.23      | 57.1    |
| West: \  | Vest       |           |          |           |         |          |          |          |        |           |         |
| 11       | T1         | 511       | 6.0      | 0.272     | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| 12       | R2         | 51        | 0.0      | 0.055     | 8.3     | LOS A    | 0.2      | 1.5      | 0.56   | 0.73      | 51.3    |
| Approach |            | 561       | 5.5      | 0.272     | 0.8     | NA       | 0.2      | 1.5      | 0.05   | 0.07      | 59.0    |
| All Veh  | icles      | 1342      | 7.6      | 0.623     | 4.9     | NA       | 3.1      | 23.7     | 0.13   | 0.27      | 54.8    |

#### With Development

| Move   | ment Perfo | ormance · | Vehicl    | es        |         |          |          |          |        |           |         |
|--------|------------|-----------|-----------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov II | D ODMo     | Demano    | l Flows I | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|        |            | Total     | ΗV        |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|        |            | veh/h     | %         | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South  | : Chatham  |           |           |           |         |          |          |          |        |           |         |
| 1      | L2         | 33        | 16.0      | 0.047     | 9.4     | LOS A    | 0.2      | 1.3      | 0.56   | 0.75      | 50.3    |
| 3      | R2         | 144       | 12.0      | 2.948     | 1866.5  | LOS F    | 68.0     | 525.3    | 1.00   | 3.01      | 1.9     |
| Appro  | ach        | 177       | 12.7      | 2.948     | 1523.8  | LOS F    | 68.0     | 525.3    | 0.92   | 2.59      | 2.3     |
| East:  | East       |           |           |           |         |          |          |          |        |           |         |
| 4      | L2         | 234       | 5.0       | 0.476     | 5.7     | LOS A    | 0.0      | 0.0      | 0.00   | 0.16      | 56.6    |
| 5      | T1         | 634       | 10.0      | 0.476     | 0.1     | LOS A    | 0.0      | 0.0      | 0.00   | 0.16      | 58.4    |
| Appro  | ach        | 867       | 8.7       | 0.476     | 1.6     | NA       | 0.0      | 0.0      | 0.00   | 0.16      | 57.9    |
| West:  | West       |           |           |           |         |          |          |          |        |           |         |
| 11     | T1         | 887       | 6.0       | 0.473     | 0.1     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.8    |
| 12     | R2         | 51        | 0.0       | 0.087     | 11.1    | LOS B    | 0.3      | 2.2      | 0.70   | 0.88      | 49.4    |
| Appro  | ach        | 938       | 5.7       | 0.473     | 0.7     | NA       | 0.3      | 2.2      | 0.04   | 0.05      | 59.2    |
| All Ve | hicles     | 1982      | 7.6       | 2.948     | 137.0   | NA       | 68.0     | 525.3    | 0.10   | 0.32      | 18.4    |

#### Alternative Layout (Roundabout)




#### **Using Default Values:**

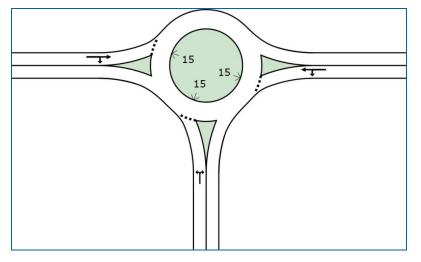
| Move    | ment Perfo | rmance · | - Vehicle | es        |         |          |          |          |        |           |         |
|---------|------------|----------|-----------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov IE  | ODMo       | Demano   | flows [   | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |            | Total    | HV        |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |            | veh/h    | %         | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South:  | Chatham    |          |           |           |         |          |          |          |        |           |         |
| 1       | L2         | 33       | 16.0      | 0.294     | 10.4    | LOS B    | 1.9      | 14.9     | 0.81   | 0.87      | 47.8    |
| 3       | R2         | 144      | 12.0      | 0.294     | 14.6    | LOS B    | 1.9      | 14.9     | 0.81   | 0.87      | 48.4    |
| Approa  | ach        | 177      | 12.7      | 0.294     | 13.8    | LOS B    | 1.9      | 14.9     | 0.81   | 0.87      | 48.3    |
| East: E | East       |          |           |           |         |          |          |          |        |           |         |
| 4       | L2         | 234      | 5.0       | 0.625     | 4.7     | LOS A    | 8.6      | 64.6     | 0.44   | 0.45      | 53.0    |
| 5       | T1         | 634      | 10.0      | 0.625     | 5.0     | LOS A    | 8.6      | 64.6     | 0.44   | 0.45      | 53.9    |
| Approa  | ach        | 867      | 8.7       | 0.625     | 4.9     | LOS A    | 8.6      | 64.6     | 0.44   | 0.45      | 53.7    |
| West:   | West       |          |           |           |         |          |          |          |        |           |         |
| 11      | T1         | 887      | 6.0       | 0.803     | 7.6     | LOS A    | 13.4     | 98.2     | 0.92   | 0.65      | 51.9    |
| 12      | R2         | 51       | 0.0       | 0.803     | 11.5    | LOS B    | 13.4     | 98.2     | 0.92   | 0.65      | 51.9    |
| Approa  | ach        | 938      | 5.7       | 0.803     | 7.8     | LOS A    | 13.4     | 98.2     | 0.92   | 0.65      | 51.9    |
| All Vel | nicles     | 1982     | 7.6       | 0.803     | 7.1     | LOS A    | 13.4     | 98.2     | 0.70   | 0.58      | 52.3    |

#### Using 1.2 Environment Factor:

| Mover   | nent Perfc | rmance - | Vehicle | es        |         |          |          |          |        |           |         |
|---------|------------|----------|---------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID  | ODMo       | Demand   | Flows   | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |            | Total    | ΗV      |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |            | veh/h    | %       | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South:  | Chatham    |          |         |           |         |          |          |          |        |           |         |
| 1       | L2         | 33       | 16.0    | 0.417     | 14.6    | LOS B    | 2.8      | 22.0     | 0.87   | 0.99      | 45.3    |
| 3       | R2         | 144      | 12.0    | 0.417     | 18.8    | LOS B    | 2.8      | 22.0     | 0.87   | 0.99      | 45.9    |
| Approa  | ich        | 177      | 12.7    | 0.417     | 18.0    | LOS B    | 2.8      | 22.0     | 0.87   | 0.99      | 45.8    |
| East: E | ast        |          |         |           |         |          |          |          |        |           |         |
| 4       | L2         | 234      | 5.0     | 0.714     | 5.1     | LOS A    | 11.8     | 89.0     | 0.58   | 0.45      | 52.6    |
| 5       | T1         | 634      | 10.0    | 0.714     | 5.3     | LOS A    | 11.8     | 89.0     | 0.58   | 0.45      | 53.4    |
| Approa  | ich        | 867      | 8.7     | 0.714     | 5.3     | LOS A    | 11.8     | 89.0     | 0.58   | 0.45      | 53.2    |
| West: \ | Nest       |          |         |           |         |          |          |          |        |           |         |
| 11      | T1         | 887      | 6.0     | 0.959     | 24.1    | LOS C    | 37.4     | 274.8    | 1.00   | 1.00      | 42.8    |
| 12      | R2         | 51       | 0.0     | 0.959     | 28.1    | LOS C    | 37.4     | 274.8    | 1.00   | 1.00      | 42.8    |
| Approa  | ich        | 938      | 5.7     | 0.959     | 24.4    | LOS C    | 37.4     | 274.8    | 1.00   | 1.00      | 42.8    |
| All Veh | icles      | 1982     | 7.6     | 0.959     | 15.4    | LOS B    | 37.4     | 274.8    | 0.80   | 0.76      | 47.1    |

#### Henderson Road (Existing Layout)




#### **Existing Situation**

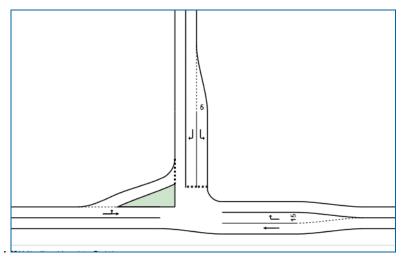
| Moven   | nent Perfo | ormance - | Vehicle   | s        |         |          |          |          |        |           |         |
|---------|------------|-----------|-----------|----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID  | ODMo       | Demand    | l Flows D | eg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |            | Total     | HV        |          | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |            | veh/h     | %         | v/c      | sec     |          | veh      | m        |        | per veh   | km/h    |
| South:  | Henderson  | I         |           |          |         |          |          |          |        |           |         |
| 1       | L2         | 48        | 7.0       | 0.062    | 8.7     | LOS A    | 0.2      | 1.7      | 0.55   | 0.75      | 51.0    |
| 3       | R2         | 88        | 10.0      | 0.758    | 66.7    | LOS F    | 3.2      | 24.0     | 0.96   | 1.19      | 27.9    |
| Approa  | ch         | 137       | 8.9       | 0.758    | 46.2    | LOS E    | 3.2      | 24.0     | 0.82   | 1.03      | 33.3    |
| East: E | ast        |           |           |          |         |          |          |          |        |           |         |
| 4       | L2         | 140       | 4.0       | 0.410    | 5.6     | LOS A    | 0.0      | 0.0      | 0.00   | 0.11      | 57.1    |
| 5       | T1         | 608       | 10.0      | 0.410    | 0.1     | LOS A    | 0.0      | 0.0      | 0.00   | 0.11      | 58.8    |
| Approa  | ch         | 748       | 8.9       | 0.410    | 1.1     | NA       | 0.0      | 0.0      | 0.00   | 0.11      | 58.5    |
| West: V | Vest       |           |           |          |         |          |          |          |        |           |         |
| 11      | T1         | 593       | 7.0       | 0.318    | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| 12      | R2         | 57        | 6.0       | 0.084    | 10.0    | LOS B    | 0.3      | 2.4      | 0.63   | 0.83      | 49.9    |
| Approa  | ch         | 649       | 6.9       | 0.318    | 0.9     | NA       | 0.3      | 2.4      | 0.06   | 0.07      | 58.9    |
| All Veh | icles      | 1535      | 8.1       | 0.758    | 5.0     | NA       | 3.2      | 24.0     | 0.10   | 0.18      | 54.9    |

#### With Development

| Mover   | ment Perfo | ormance - | - Vehic | les       |         |          |          |          |        |           |         |
|---------|------------|-----------|---------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID  | ODMo       | Demanc    | d Flows | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |            | Total     | HV      |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |            | veh/h     | %       | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South:  | Henderson  |           |         |           |         |          |          |          |        |           |         |
| 1       | L2         | 48        | 7.0     | 0.104     | 12.4    | LOS B    | 0.3      | 2.6      | 0.73   | 0.88      | 48.5    |
| 3       | R2         | 88        | 10.0    | 6.037     | 4842.6  | LOS F    | 60.2     | 457.4    | 1.00   | 1.86      | 0.7     |
| Approa  | ach        | 137       | 8.9     | 6.037     | 3133.4  | LOS F    | 60.2     | 457.4    | 0.90   | 1.51      | 1.1     |
| East: E | ast        |           |         |           |         |          |          |          |        |           |         |
| 4       | L2         | 140       | 4.0     | 0.566     | 5.7     | LOS A    | 0.0      | 0.0      | 0.00   | 0.08      | 57.3    |
| 5       | T1         | 894       | 10.0    | 0.566     | 0.1     | LOS A    | 0.0      | 0.0      | 0.00   | 0.08      | 59.0    |
| Approa  | ach        | 1034      | 9.2     | 0.566     | 0.9     | NA       | 0.0      | 0.0      | 0.00   | 0.08      | 58.8    |
| West:   | West       |           |         |           |         |          |          |          |        |           |         |
| 11      | T1         | 1052      | 7.0     | 0.564     | 0.1     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.8    |
| 12      | R2         | 57        | 6.0     | 0.156     | 15.5    | LOS C    | 0.5      | 4.0      | 0.82   | 0.93      | 46.4    |
| Approa  | ach        | 1108      | 6.9     | 0.564     | 0.9     | NA       | 0.5      | 4.0      | 0.04   | 0.05      | 58.9    |
| All Veh | nicles     | 2279      | 8.1     | 6.037     | 189.0   | NA       | 60.2     | 457.4    | 0.07   | 0.15      | 14.6    |

#### Alternative Layout (Roundabout)




#### **Using Default Values**

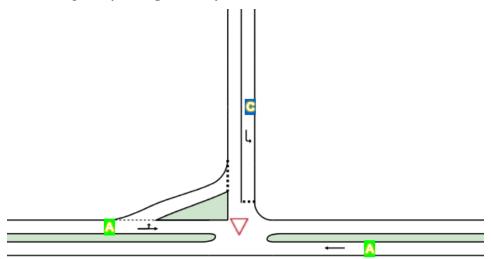
| ent Perfo | rmance -                                                                                   | - Vehicle                                                                                                                                                                                                                                                                                                                                                        | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ODMo      | Demand                                                                                     | l Flows D                                                                                                                                                                                                                                                                                                                                                        | eg. Satn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% Back                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of Queue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | Total                                                                                      | HV                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Delay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vehicles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Queued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stop Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | veh/h                                                                                      | %                                                                                                                                                                                                                                                                                                                                                                | v/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | per veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | km/ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| enderson  |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L2        | 48                                                                                         | 7.0                                                                                                                                                                                                                                                                                                                                                              | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| R2        | 88                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                             | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| h         | 137                                                                                        | 8.9                                                                                                                                                                                                                                                                                                                                                              | 0.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| st        |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L2        | 140                                                                                        | 4.0                                                                                                                                                                                                                                                                                                                                                              | 0.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| T1        | 894                                                                                        | 10.0                                                                                                                                                                                                                                                                                                                                                             | 0.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| h         | 1034                                                                                       | 9.2                                                                                                                                                                                                                                                                                                                                                              | 0.754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| est       |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| T1        | 1052                                                                                       | 7.0                                                                                                                                                                                                                                                                                                                                                              | 0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| R2        | 57                                                                                         | 6.0                                                                                                                                                                                                                                                                                                                                                              | 0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| h         | 1108                                                                                       | 6.9                                                                                                                                                                                                                                                                                                                                                              | 0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| les       | 2279                                                                                       | 8.1                                                                                                                                                                                                                                                                                                                                                              | 0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | enderson<br>L2<br>R2<br>h<br>st<br>L2<br>T1<br>h<br>est<br>T1<br>k<br>est<br>T1<br>R2<br>h | ODMo         Demand           V         Total<br>veh/h           enderson         1           L2         48           R2         88           h         137           st         1           L2         140           T1         894           h         1034           est         1           T1         1052           R2         57           h         1108 | Demand Flows         D           V         Total         HV           veh/h         %           enderson         100           L2         48         7.0           R2         88         10.0           h         137         8.9           st         100         100           L2         140         4.0           T1         894         10.0           h         1034         9.2           est         11052         7.0           R2         57         6.0           h         1108         6.9 | V         Total<br>veh/h         HV<br>%         V/c           enderson         100         0.331           R2         48         7.0         0.331           R2         88         10.0         0.331           h         137         8.9         0.331           st         11         894         10.0         0.754           T1         894         10.0         0.754           est         111         1052         7.0         0.856           R2         57         6.0         0.856 | Demand Flows         Deg. Satn         Average Delay           Y         Total         HV         Delay           veh/h         %         v/c         sec           enderson         1         1         1         1           R2         48         7.0         0.331         14.1           R2         88         10.0         0.331         18.3           h         137         8.9         0.331         16.9           st         1         137         8.9         0.331         16.9           st         1         137         8.9         0.351         16.9           st         1         137         8.9         0.351         16.9           st         1         137         8.9         0.351         16.9           st         1         1034         9.2         0.754         5.3           est         1         1052         7.0         0.856         6.3           R2         57         6.0         0.856         10.3           h         1108         6.9         0.856         6.5 | Demand Flows Deg. Satn<br>V         Average<br>Delay         Level of<br>Service           Total         HV         Delay         Level of<br>Service           veh/h         %         v/c         sec           enderson         14.1         LOS B           R2         88         10.0         0.331         14.1         LOS B           h         137         8.9         0.331         16.9         LOS B           st         11         894         10.0         0.754         5.1         LOS A           h         1034         9.2         0.754         5.3         LOS A           est         11         1052         7.0         0.856         6.3         LOS A           R2         57         6.0         0.856         10.3         LOS A | ODMo         Demand Flows Deg. Satn         Average Delay         Level of Delay         95% Back Vehicles           v         Total         HV         vc         sec         Vehicles         veh           enderson         12         48         7.0         0.331         14.1         LOS B         2.3           R2         88         10.0         0.331         18.3         LOS B         2.3           h         137         8.9         0.331         16.9         LOS B         2.3           st         12         140         4.0         0.754         5.1         LOS A         13.6           T1         894         10.0         0.754         5.3         LOS A         13.6           h         1034         9.2         0.754         5.3         LOS A         13.6           est         11052         7.0         0.856         6.3         LOS A         18.2           R2         57         6.0         0.856         10.3         LOS B         18.2           h         1108         6.9         0.856         6.5         LOS A         18.2 | ODMo         Demand Flows         Deg. Satn         Average Delay         Level of Service         95% Back of Queue           V         Total         HV         veh/h         %         v/c         Service         95% Back of Queue           veh/h         %         v/c         Sec         Vehicles         Distance           enderson         11         LOS B         2.3         17.5           R2         88         10.0         0.331         14.1         LOS B         2.3         17.5           h         137         8.9         0.331         16.9         LOS B         2.3         17.5           st         11         894         10.0         0.754         5.1         LOS A         13.6         102.9           h         1034         9.2         0.754         5.3         LOS A         13.6         102.9           est         11         1052         7.0         0.856         6.3         LOS A         18.2         135.2           R2         57         6.0         0.856         10.3         LOS B         18.2         135.2           h         1108         6.9         0.856         6.5         LOS A         18.2 <td>Demand Flows         Deg. Satn         Average<br/>Delay         Level of<br/>Service         95% Back of Queue<br/>Vehicles         Prop.<br/>Distance           veh/h         %         v/c         sec         veh         m           enderson         12         48         7.0         0.331         14.1         LOS B         2.3         17.5         0.94           R2         88         10.0         0.331         18.3         LOS B         2.3         17.5         0.94           h         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94           st         11         8.9         0.331         16.9         LOS B         2.3         17.5         0.94           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94           st         137         8.9         0.331         16.9         LOS A         13.6         102.9         0.63           f1         894         10.0         0.754         5.3         LOS A         13.6         102.9         0.63           est         1034         9.2         0.754         5.3         LOS A         13.6<td>ODMo         Demand Flows         Deg. Satn         Average Delay         Level of Delay         95% Back of Queue         Prop. Veh/e         Effective Stop Rate           veh/h         %         v/c         sec         veh         m         Prop.         Effective Stop Rate           enderson         %         v/c         sec         veh         m         Prop.         Effective Stop Rate           L2         48         7.0         0.331         14.1         LOS B         2.3         17.5         0.94         0.97           R2         88         10.0         0.331         18.3         LOS B         2.3         17.5         0.94         0.97           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94         0.97           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94         0.97           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94         0.97           st         122         140         4.0         0.754         5.3         LOS A         13.6         1</td></td> | Demand Flows         Deg. Satn         Average<br>Delay         Level of<br>Service         95% Back of Queue<br>Vehicles         Prop.<br>Distance           veh/h         %         v/c         sec         veh         m           enderson         12         48         7.0         0.331         14.1         LOS B         2.3         17.5         0.94           R2         88         10.0         0.331         18.3         LOS B         2.3         17.5         0.94           h         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94           st         11         8.9         0.331         16.9         LOS B         2.3         17.5         0.94           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94           st         137         8.9         0.331         16.9         LOS A         13.6         102.9         0.63           f1         894         10.0         0.754         5.3         LOS A         13.6         102.9         0.63           est         1034         9.2         0.754         5.3         LOS A         13.6 <td>ODMo         Demand Flows         Deg. Satn         Average Delay         Level of Delay         95% Back of Queue         Prop. Veh/e         Effective Stop Rate           veh/h         %         v/c         sec         veh         m         Prop.         Effective Stop Rate           enderson         %         v/c         sec         veh         m         Prop.         Effective Stop Rate           L2         48         7.0         0.331         14.1         LOS B         2.3         17.5         0.94         0.97           R2         88         10.0         0.331         18.3         LOS B         2.3         17.5         0.94         0.97           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94         0.97           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94         0.97           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94         0.97           st         122         140         4.0         0.754         5.3         LOS A         13.6         1</td> | ODMo         Demand Flows         Deg. Satn         Average Delay         Level of Delay         95% Back of Queue         Prop. Veh/e         Effective Stop Rate           veh/h         %         v/c         sec         veh         m         Prop.         Effective Stop Rate           enderson         %         v/c         sec         veh         m         Prop.         Effective Stop Rate           L2         48         7.0         0.331         14.1         LOS B         2.3         17.5         0.94         0.97           R2         88         10.0         0.331         18.3         LOS B         2.3         17.5         0.94         0.97           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94         0.97           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94         0.97           st         137         8.9         0.331         16.9         LOS B         2.3         17.5         0.94         0.97           st         122         140         4.0         0.754         5.3         LOS A         13.6         1 |

#### Using 1.2 Environment Factor:

| Mover   | nent Perfo | rmance · | - Vehicle | es        |         |          |          |          |        |           |         |
|---------|------------|----------|-----------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID  | ODMo       | Demano   | d Flows D | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |            | Total    | HV        |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |            | veh/h    | %         | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| South:  | Henderson  |          |           |           |         |          |          |          |        |           |         |
| 1       | L2         | 48       | 7.0       | 0.545     | 26.4    | LOS C    | 4.2      | 31.5     | 0.99   | 1.10      | 40.0    |
| 3       | R2         | 88       | 10.0      | 0.545     | 30.6    | LOS C    | 4.2      | 31.5     | 0.99   | 1.10      | 40.4    |
| Approa  | ch         | 137      | 8.9       | 0.545     | 29.1    | LOS C    | 4.2      | 31.5     | 0.99   | 1.10      | 40.3    |
| East: E | ast        |          |           |           |         |          |          |          |        |           |         |
| 4       | L2         | 140      | 4.0       | 0.861     | 5.9     | LOS A    | 21.6     | 163.4    | 0.94   | 0.48      | 51.2    |
| 5       | T1         | 894      | 10.0      | 0.861     | 6.1     | LOS A    | 21.6     | 163.4    | 0.94   | 0.48      | 52.0    |
| Approa  | ch         | 1034     | 9.2       | 0.861     | 6.1     | LOS A    | 21.6     | 163.4    | 0.94   | 0.48      | 51.9    |
| West: \ | Vest       |          |           |           |         |          |          |          |        |           |         |
| 11      | T1         | 1052     | 7.0       | 0.993     | 19.5    | LOS B    | 49.7     | 368.8    | 1.00   | 0.72      | 45.3    |
| 12      | R2         | 57       | 6.0       | 0.993     | 23.5    | LOS C    | 49.7     | 368.8    | 1.00   | 0.72      | 45.1    |
| Approa  | ch         | 1108     | 6.9       | 0.993     | 19.7    | LOS B    | 49.7     | 368.8    | 1.00   | 0.72      | 45.2    |
| All Veh | icles      | 2279     | 8.1       | 0.993     | 14.1    | LOS B    | 49.7     | 368.8    | 0.97   | 0.63      | 47.6    |

#### Raupare Road (Existing Layout)




#### **Existing Situation**

| Mover    | nent Perf | ormance - | Vehicl | es        |         |          |          |          |        |           |         |
|----------|-----------|-----------|--------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID   | ODMo      | Demand    | Flows  | Deg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|          |           | Total     | HV     |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|          |           | veh/h     | %      | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| East: E  | ast       |           |        |           |         |          |          |          |        |           |         |
| 5        | T1        | 615       | 9.0    | 0.334     | 0.0     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.9    |
| 6        | R2        | 33        | 0.0    | 0.038     | 8.5     | LOS A    | 0.1      | 1.0      | 0.57   | 0.72      | 51.2    |
| Approa   | ch        | 647       | 8.5    | 0.334     | 0.5     | NA       | 0.1      | 1.0      | 0.03   | 0.04      | 59.4    |
| North: I | Raupare   |           |        |           |         |          |          |          |        |           |         |
| 7        | L2        | 62        | 0.0    | 0.077     | 8.6     | LOS A    | 0.3      | 2.0      | 0.55   | 0.76      | 51.3    |
| 9        | R2        | 13        | 0.0    | 0.078     | 27.0    | LOS D    | 0.2      | 1.7      | 0.87   | 0.95      | 40.4    |
| Approa   | ch        | 75        | 0.0    | 0.078     | 11.7    | LOS B    | 0.3      | 2.0      | 0.61   | 0.79      | 49.1    |
| West: \  | Vest      |           |        |           |         |          |          |          |        |           |         |
| 10       | L2        | 17        | 13.0   | 0.356     | 5.9     | LOS A    | 2.5      | 18.5     | 0.14   | 0.01      | 57.8    |
| 11       | T1        | 645       | 6.0    | 0.356     | 0.2     | LOS A    | 2.5      | 18.5     | 0.14   | 0.01      | 59.2    |
| Approa   | ch        | 662       | 6.2    | 0.356     | 0.3     | NA       | 2.5      | 18.5     | 0.14   | 0.01      | 59.2    |
| All Veh  | icles     | 1384      | 7.0    | 0.356     | 1.0     | NA       | 2.5      | 18.5     | 0.11   | 0.07      | 58.6    |

#### With Development

| Moven    | nent Perf | ormance - | Vehicle | S        |         |          |          |          |        |           |         |
|----------|-----------|-----------|---------|----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID   | ODMo      | Demand    | Flows D | eg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|          |           | Total     | ΗV      |          | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|          |           | veh/h     | %       | v/c      | sec     |          | veh      | m        |        | per veh   | km/h    |
| East: E  | ast       |           |         |          |         |          |          |          |        |           |         |
| 5        | T1        | 912       | 9.0     | 0.495    | 0.1     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.8    |
| 6        | R2        | 33        | 0.0     | 0.107    | 17.2    | LOS C    | 0.4      | 2.5      | 0.85   | 0.94      | 45.6    |
| Approa   | ch        | 944       | 8.7     | 0.495    | 0.7     | NA       | 0.4      | 2.5      | 0.03   | 0.03      | 59.2    |
| North: F | Raupare   |           |         |          |         |          |          |          |        |           |         |
| 7        | L2        | 62        | 0.0     | 0.215    | 18.3    | LOS C    | 0.7      | 4.9      | 0.86   | 0.95      | 45.2    |
| 9        | R2        | 13        | 0.0     | 0.781    | 418.3   | LOS F    | 2.2      | 15.5     | 1.00   | 1.06      | 7.6     |
| Approa   | ch        | 75        | 0.0     | 0.781    | 85.9    | LOS F    | 2.2      | 15.5     | 0.88   | 0.97      | 24.6    |
| West: V  | Vest      |           |         |          |         |          |          |          |        |           |         |
| 10       | L2        | 17        | 13.0    | 0.622    | 6.0     | LOS A    | 6.8      | 49.8     | 0.20   | 0.01      | 57.6    |
| 11       | T1        | 1145      | 6.0     | 0.622    | 0.3     | LOS A    | 6.8      | 49.8     | 0.20   | 0.01      | 59.0    |
| Approa   | ch        | 1162      | 6.1     | 0.622    | 0.4     | NA       | 6.8      | 49.8     | 0.20   | 0.01      | 59.0    |
| All Vehi | icles     | 2181      | 7.0     | 0.781    | 3.4     | NA       | 6.8      | 49.8     | 0.15   | 0.05      | 56.4    |

#### Alternative Layout (No Right Turn)



| Move    | ment Per | formance | e - Vehio | les       |         |          |          |          |        |           |         |
|---------|----------|----------|-----------|-----------|---------|----------|----------|----------|--------|-----------|---------|
| Mov ID  | ODMo     | Demanc   | flows C   | 0eg. Satn | Average | Level of | 95% Back | of Queue | Prop.  | Effective | Average |
|         |          | Total    | ΗV        |           | Delay   | Service  | Vehicles | Distance | Queued | Stop Rate | Speed   |
|         |          | veh/h    | %         | v/c       | sec     |          | veh      | m        |        | per veh   | km/h    |
| East: E | ast      |          |           |           |         |          |          |          |        |           |         |
| 5       | T1       | 944      | 9.0       | 0.513     | 0.1     | LOS A    | 0.0      | 0.0      | 0.00   | 0.00      | 59.8    |
| Approa  | ich      | 944      | 9.0       | 0.513     | 0.1     | NA       | 0.0      | 0.0      | 0.00   | 0.00      | 59.8    |
| North:  | Raupare  |          |           |           |         |          |          |          |        |           |         |
| 7       | L2       | 75       | 0.0       | 0.259     | 18.9    | LOS C    | 0.9      | 6.1      | 0.86   | 0.97      | 44.8    |
| Approa  | ich      | 75       | 0.0       | 0.259     | 18.9    | LOS C    | 0.9      | 6.1      | 0.86   | 0.97      | 44.8    |
| West: \ | Nest     |          |           |           |         |          |          |          |        |           |         |
| 10      | L2       | 17       | 13.0      | 0.620     | 5.9     | LOS A    | 0.0      | 0.0      | 0.00   | 0.01      | 58.5    |
| 11      | T1       | 1145     | 6.0       | 0.620     | 0.1     | LOS A    | 0.0      | 0.0      | 0.00   | 0.01      | 59.9    |
| Approa  | ich      | 1162     | 6.1       | 0.620     | 0.2     | LOS A    | 0.0      | 0.0      | 0.00   | 0.01      | 59.9    |
| All Veh | icles    | 2181     | 7.1       | 0.620     | 0.8     | NA       | 0.9      | 6.1      | 0.03   | 0.04      | 59.2    |

GHD

134 Queen Street East Hastings 4156 T: 64 6 870 9105

#### © GHD Limited 2015

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

C:\Users\acampion\Desktop\TIA - Omahu Road\_02112015\_AC.doc

Document Status

| Rev   | Author           | Reviewer      |           | Approved for Issue |           |            |  |  |
|-------|------------------|---------------|-----------|--------------------|-----------|------------|--|--|
| No.   |                  | Name          | Signature | Name               | Signature | Date       |  |  |
| Draft | Aaron<br>Campion | Tony Harrison | P. Annin  | Tony Harrison      | J. Harrin | 10/11/2015 |  |  |
|       |                  |               |           |                    |           |            |  |  |
|       |                  |               |           |                    |           |            |  |  |

# www.ghd.com

